I. Rougier

- Etape 1 (Initialisation):
 - Placer tous les sommets du graphe dans la 1^{ère} ligne d'un tableau.
 - Sur La 2ème ligne, écrire le coefficient 0 pour le sommet de départ et les coefficient ∞ pour tous les autres sommets

- Etape 1 (Initialisation):
 - Placer tous les sommets du graphe dans la 1^{ère} ligne d'un tableau.
 - Sur La 2ème ligne, écrire le coefficient 0 pour le sommet de départ et les coefficient ∞ pour tous les autres sommets

- Etape 1 (Initialisation):
 - Placer tous les sommets du graphe dans la 1^{ère} ligne d'un tableau.
 - Sur La 2^{ème} ligne, écrire le coefficient 0 pour le sommet de départ et les coefficient ∞ pour tous les autres sommets

- Etape 1 (Initialisation):
 - Placer tous les sommets du graphe dans la 1^{ère} ligne d'un tableau.
 - Sur La 2^{ème} ligne, écrire le coefficient 0 pour le sommet de départ et les coefficient ∞ pour tous les autres sommets

- Etape 2 (Traitement) :
 - Repérer le sommet X de coefficient minimal : rayer la colonne sous ce sommet
 - Pour tous les sommets Y non rayés :
 - Si Y est adjacent à X alors :
 - p = coefficient(X)+poids(arête X-Y)
 - Si p < coefficient(Y) alors remplacer le coefficient de Y par p; sinon recopier le coefficient(Y).
 - Si Y n'est pas adjacent à X alors recopier le coefficient(Y)
 - Tant qu'il reste des colonnes non rayés, reprendre l'étape 2.

- Etape 2 (Traitement):
 - Repérer le sommet X de coefficient minimal : rayer la colonne sous ce sommet
 - Pour tous les sommets Y non rayés :
 - Si Y est adjacent à X alors :
 - p = coefficient(X)+poids(arête X-Y)
 - Si p < coefficient(Y) alors remplacer le coefficient de Y par p; sinon recopier le coefficient(Y).
 - Si Y n'est pas adjacent à X alors recopier le coefficient(Y)
 - Tant qu'il reste des colonnes non rayés, reprendre l'étape 2.

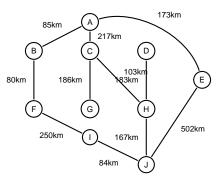
- Etape 2 (Traitement):
- Repérer le sommet X de coefficient minimal : rayer la colonne sous ce sommet
- Pour tous les sommets Y non rayés :
 - Si Y est adjacent à X alors :
 - p = coefficient(X)+poids(arête X-Y)
 - Si p < coefficient(Y) alors remplacer le coefficient de Y par p; sinon recopier le coefficient(Y)
 - Si Y n'est pas adjacent à X alors recopier le coefficient(Y)
- Tant qu'il reste des colonnes non rayés, reprendre l'étape 2.

- Etape 2 (Traitement):
- Repérer le sommet X de coefficient minimal : rayer la colonne sous ce sommet
- Pour tous les sommets Y non rayés :
- Si Y est adjacent à X alors :
- p = coefficient(X)+poids(arête X-Y)
- Si p < coefficient(Y) alors remplacer le coefficient de Y par p; sinon recopier le coefficient(Y).
- Si Y n'est pas adiacent à X alors recopier le coefficient(Y)
- Tant qu'il reste des colonnes non rayés, reprendre l'étape 2.

- Etape 2 (Traitement):
- Repérer le sommet X de coefficient minimal : rayer la colonne sous ce sommet
- Pour tous les sommets Y non rayés :
- Si Y est adjacent à X alors :
- p = coefficient(X)+poids(arête X-Y)
- Si p < coefficient(Y) alors remplacer le coefficient de Y par p; sinon recopier le coefficient(Y).
- Si Y n'est pas adiacent à X alors recopier le coefficient(Y)
- Tant qu'il reste des colonnes non rayés, reprendre l'étape 2.

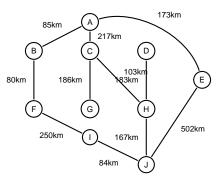
- Etape 2 (Traitement) :
- Repérer le sommet X de coefficient minimal : rayer la colonne sous ce sommet
- Pour tous les sommets Y non rayés :
- Si Y est adjacent à X alors :
- p = coefficient(X)+poids(arête X-Y)
- Si p < coefficient(Y) alors remplacer le coefficient de Y par p; sinon recopier le coefficient(Y).
- Si Y n'est pas adjacent à X alors recopier le coefficient(Y)
- Tant qu'il reste des colonnes non rayés, reprendre l'étape 2.

- Etape 2 (Traitement):
- Repérer le sommet X de coefficient minimal : rayer la colonne sous ce sommet
- Pour tous les sommets Y non rayés :
- Si Y est adjacent à X alors :
- p = coefficient(X)+poids(arête X-Y)
- Si p < coefficient(Y) alors remplacer le coefficient de Y par p; sinon recopier le coefficient(Y).
- Si Y n'est pas adjacent à X alors recopier le coefficient(Y)
- Tant qu'il reste des colonnes non rayés, reprendre l'étape 2.

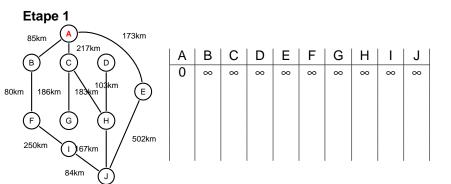

- Etape 2 (Traitement):
- Repérer le sommet X de coefficient minimal : rayer la colonne sous ce sommet
- Pour tous les sommets Y non rayés :
- Si Y est adjacent à X alors :
- p = coefficient(X)+poids(arête X-Y)
- Si p < coefficient(Y) alors remplacer le coefficient de Y par p; sinon recopier le coefficient(Y).
- Si Y n'est pas adjacent à X alors recopier le coefficient(Y)
- Tant qu'il reste des colonnes non rayés, reprendre l'étape 2.

- Etape 3 (Sortie):
- Le poids de la chaîne la plus courte est le dernier nombre dans la colonne du sommet d'arrivée.
- Pour connaître cette chaîne, on remonte à l'envers : partir du dernier nombre de la colonne du sommet. Rechercher l'étape de sa modification : prendre le sommet qui a été barré à cette étape.
 Procéder de même jusqu'à remonter au coefficient "0".

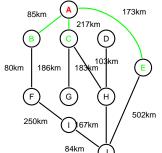
- Etape 3 (Sortie):
- Le poids de la chaîne la plus courte est le dernier nombre dans la colonne du sommet d'arrivée.
- Pour connaître cette chaîne, on remonte à l'envers : partir du dernier nombre de la colonne du sommet. Rechercher l'étape de sa modification : prendre le sommet qui a été barré à cette étape.
 Procéder de même jusqu'à remonter au coefficient "0".


- Etape 3 (Sortie):
- Le poids de la chaîne la plus courte est le dernier nombre dans la colonne du sommet d'arrivée.
- Pour connaître cette chaîne, on remonte à l'envers : partir du dernier nombre de la colonne du sommet. Rechercher l'étape de sa modification : prendre le sommet qui a été barré à cette étape.
 Procéder de même jusqu'à remonter au coefficient "0".

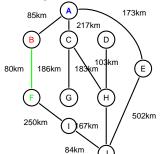
On considère le graphe suivant, qui représente les distances entre plusieurs villes.

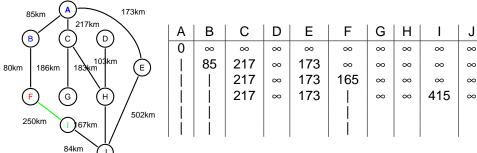


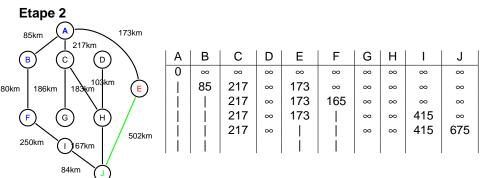
On souhaite aller de la ville A à la ville J par le plus court chemin.

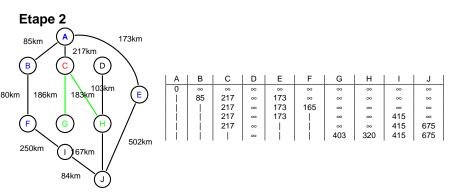

On considère le graphe suivant, qui représente les distances entre plusieurs villes.

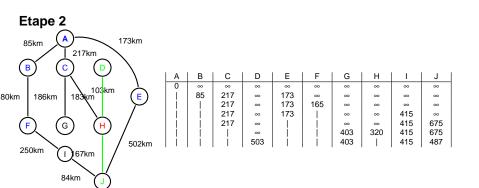
On souhaite aller de la ville A à la ville J par le plus court chemin.

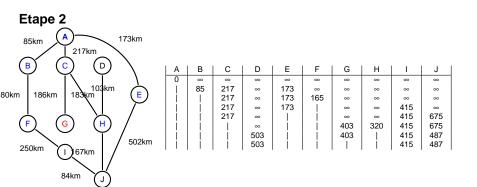


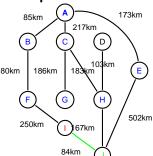

J		Н	G	F	E	D	С	В	A
∞	∞	∞	∞	∞	~	∞	∞	∞	0
∞	∞	∞	∞	∞	173	∞	217	85	
									Ιİ
									ΙÌ
									Ιİ
									Ιi
,	000	8	∞	∞	1/3		217	85	

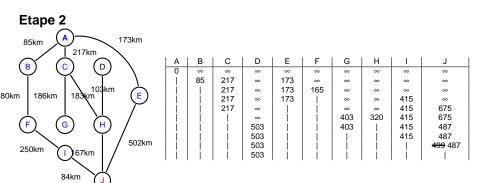


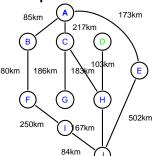


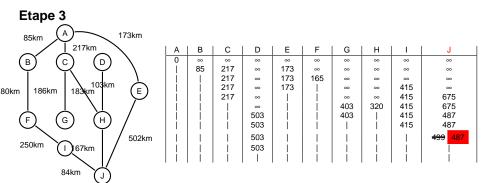

Α	В	С	D	E	F	G	Н	I	J
0	∞	∞	8	∞	~	8	∞	∞	∞
- 1	85	217	∞	173	∞	8	∞	∞	∞
ĺ		217	∞	173	165	∞	∞	∞	∞
Ì	li								
ĺ	li								
ĺ	li								
•		1				'		'	

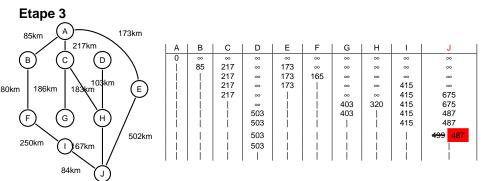


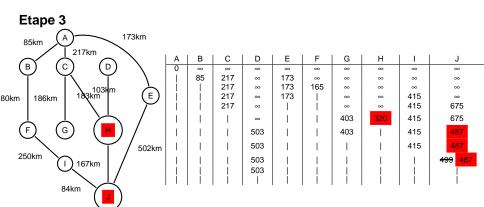


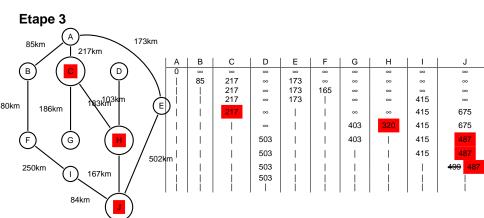


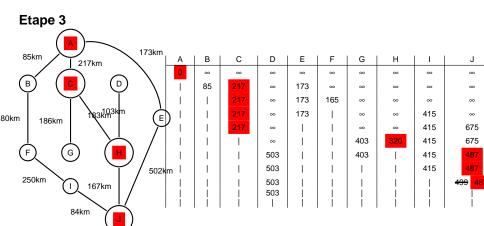



Α	В	C	D	E	F	G	H	1	J
0	∞	∞	∞	∞	00	00	∞	∞	00
1 1	85	217	00	173	00	00	∞	∞	000
l i	1	217	00	173	165	00	∞	∞	00
l i l		217	00	173		00	∞	415	000
Ì	i	217	00		i	00	∞	415	675
i l	i		00	li	i	403	320	415	675
i i		l i	503	li		403		415	487
Ì	i i	l i	503	li	i		l i l	415	487
l i l	ĺĺ	li	503	li	l i l	ĺĺ	l i l		499 487




Α	В	C	D	E	F	G	Н	- 1	J
0	~	- 00	∞	~	∞	∞	∞	∞	∞
	85	217	00	173	00	∞	∞	00	∞
Ì		217	00	173	165	∞	∞	00	∞
Ĺ	İ	217	00	173		∞	∞	415	∞
i l	l i	217	00		i	∞	∞	415	675
Ĺ	ĺ		00	l i	İ	403	320	415	675
i l	İ	l i	503	li	İ	403		415	487
i	l i	li	503	li	i		l i	415	487
Ĺ	İ	li	503	l i	İ	li	l i		499 487
i l	l i	li	503	li	i	l i	İ	i	1
i	l i	li		Ιi	l í	Ιί	l i	ĺĺ	l i




Le plus court chemin pour aller de A vers J est de 487 km.

Le plus court chemin pour aller de A vers J est de 487 km.

La plus courte chaîne est alors A-C-H-J.

La plus courte chaîne est alors A-C-H-J.

FIN