ESSENTIEL 1: Savoir démontrer par récurrence...

...que « pour tout $n \ge n_0$, la propriété P(n) est vraie ».

Enoncé: Démontrer par récurrence, que pour tout entier $n \ge 10$, $2^n \ge 100n$.

Solution: P(n) désigne la proposition « pour tout entier $n \ge 10$, $2^n \ge 100n$ ».

1^{ère} étape : initialisation

On vérifie que P(10) est vraie.

 $2^{10} = 1024$ et $100 \times 10 = 1000$ donc $2^{10} \ge 100 \times 10$ et P(10) est vraie.

2^{ème} étape : Hérédité.

On **suppose** que pour **un** entier naturel $k \ge 10$, P(k) est vraie, c'est-à-dire $2^k \ge 100k$ (c'est ce qu'on appelle hypothèse de récurrence).

On **démontre** qu'alors P(k+1) est vraie, c'est-à-dire $2^{k+1} \ge 100(k+1)$.

Or $2^{k+1} = 2^k \times 2$, en utilisant l'hypothèse de récurrence : $2^{k+1} \ge 2 \times 100k$

c'est-à-dire $2^{k+1} \ge 100k + 100k$

De $k \ge 10$, on en déduit $100k \ge 1000$ et donc en particulier $100k \ge 100$

D'où $2^{k+1} \ge 100k + 100$, c'est-à-dire $2^{k+1} \ge 100(k+1)$ donc P(k+1) est vraie

Conclusion : La propriété est vraie pour n = 10 et est héréditaire donc pour tout entier $n \ge 10$, $2^n \ge 100n$.

...qu'une suite est monotone.

Rappels des méthodes.

Pour étudier le sens de variation d'une suite u, on peut :

- Etudier algébriquement le signe de $u_{n+1} u_n$;
- Si $u_n = f(n)$, étudier le sens de variation de la fonction $f \sup [0; +\infty[$;
- Si tous les termes sont strictement positifs, comparer $\frac{u_{n+1}}{u_n}$ à 1;
- Utiliser un raisonnement par récurrence.

Enoncé: La suite u est définie par $u_0 = 0$ et pour tout entier naturel n, $u_{n+1} = \sqrt{u_n + 5}$.

Démontrer par récurrence que cette suite est croissante.

Solution : On note P(n) la proposition « Pour tout naturel $n, u_n \le u_{n+1}$ ».

1^{ère} étape : initialisation

P(0) est vraie car $u_0 \le u_1$, en effet $u_0 = 0$ et $u_1 = \sqrt{5}$.

2^{ème} étape : Hérédité.

On **suppose** que pour **un** entier naturel k, P(k) est vraie, c'est-à-dire $u_k \le u_{k+1}$.

Alors $u_k + 5 \le u_{k+1} + 5$ et $\sqrt{u_k + 5} \le \sqrt{u_{k+1} + 5}$ car la fonction racine carrée est croissante sur $[0; +\infty[$.

Donc $u_{k+1} \le u_{k+2}$ et P(k+1) est vraie.

Conclusion : La propriété est vraie pour n = 0 et est héréditaire donc pour tout entier naturel n, $u_n \le u_{n+1}$. La suite u est croissante.

+ Consulter également l'exercice résolu n°1 de votre livre page 61.